The Future of Big Data and Artificial Intelligence in Talent Management Practices: A Literature Review

Authors

  • Aditya Santoso Universitas Nasional
  • Suryono Efendi Universitas Nasional
  • Andini Nurwulandari Universitas Nasional

DOI:

https://doi.org/10.61132/ijems.v1i3.132

Keywords:

Artificial Intelligence, Big Data, Talent Management

Abstract

Currently, the business sector has entered a digital transformation stage involving Big Data (BD) and Artificial Intelligence (AI). At this stage the institution must change the way it operates its business, even to a philosophical point. This paper attempts to predict the direction of these changes through literature studies. The purpose of this paper is to provide a broad view regarding the application of BD and AI in Talent Management (MT) practice. From this study it was found that the use of AI and BD in the MT process (recruiting, developing, retaining and deploying talent) has obstacles inculde: 1) availability of expert human resources, 2) data security and 3) psychological barriers of top management and employees. Some of the strategic recommendations found include: 1) Building HR expertise and adaptation, 2) Legal readiness, 3) Managerial strategy and 4) Reducing AI bias to increase the fairness of AI decisions.

 

 

Downloads

Download data is not yet available.

References

Al-Jarrah, O. Y., Yoo, P. D., Muhaidat, S., Karagiannidis, G. K., & Taha, K. (2015). Efficient Machine Learning for Big Data: A Review. Big Data Research, 2(3), 87–93. https://doi.org/10.1016/J.BDR.2015.04.001

Allal-Chérif, O., Yela Aránega, A., & Castaño Sánchez, R. (2021). Intelligent recruitment: How to identify, select, and retain talents from around the world using artificial intelligence. Technological Forecasting and Social Change, 169, 120822. https://doi.org/10.1016/J.TECHFORE.2021.120822

Aminullah, E., Fizzanty, T., Nawawi, N., Suryanto, J., Pranata, N., Maulana, I., Ariyani, L., Wicaksono, A., Suardi, I., Azis, N. L. L., & Budiatri, A. P. (2022). Interactive Components of Digital MSMEs Ecosystem for Inclusive Digital Economy in Indonesia. Journal of the Knowledge Economy, 1–31. https://doi.org/10.1007/S13132-022-01086-8/FIGURES/2

Booth, A., Sutton, A., & Papaioannou, D. (n.d.). Systematic approaches to a successful literature review. 326. Retrieved November 23, 2023, from https://books.google.com/books/about/Systematic_Approaches_to_a_Successful_Li.html?hl=id&id=JD1DCgAAQBAJ

Chen, P. T., Lin, C. L., & Wu, W. N. (2020). Big data management in healthcare: Adoption challenges and implications. International Journal of Information Management, 53, 102078. https://doi.org/10.1016/J.IJINFOMGT.2020.102078

Chou, S. F., Horng, J. S., Liu, C. H., Yu, T. Y., & Kuo, Y. T. (2022). Identifying the critical factors for sustainable marketing in the catering: The influence of big data applications, marketing innovation, and technology acceptance model factors. Journal of Hospitality and Tourism Management, 51, 11–21. https://doi.org/10.1016/J.JHTM.2022.02.010

Chowdhury, S., Dey, P., Joel-Edgar, S., Bhattacharya, S., Rodriguez-Espindola, O., Abadie, A., & Truong, L. (2023). Unlocking the value of artificial intelligence in human resource management through AI capability framework. Human Resource Management Review, 33(1), 100899. https://doi.org/10.1016/J.HRMR.2022.100899

Coulson-Thomas, C. (2012). Talent management and building high performance organisations. Industrial and Commercial Training, 44(7), 429–436. https://doi.org/10.1108/00197851211268027/FULL/XML

da Silva, L. B. P., Soltovski, R., Pontes, J., Treinta, F. T., Leitão, P., Mosconi, E., de Resende, L. M. M., & Yoshino, R. T. (2022). Human resources management 4.0: Literature review and trends. Computers & Industrial Engineering, 168, 108111. https://doi.org/10.1016/J.CIE.2022.108111

De Mauro, A., Greco, M., Grimaldi, M., & Ritala, P. (2018). Human resources for Big Data professions: A systematic classification of job roles and required skill sets. Information Processing & Management, 54(5), 807–817. https://doi.org/10.1016/J.IPM.2017.05.004

Delecraz, S., Eltarr, L., Becuwe, M., Bouxin, H., Boutin, N., & Oullier, O. (2022). Responsible Artificial Intelligence in Human Resources Technology: An innovative inclusive and fair by design matching algorithm for job recruitment purposes. Journal of Responsible Technology, 11, 100041. https://doi.org/10.1016/J.JRT.2022.100041

Earley, S. (2014). The digital transformation: Staying competitive. IT Professional, 16(2), 58–60. https://doi.org/10.1109/MITP.2014.24

EDUCAUSE. (2020). Defining Digital Transformation | EDUCAUSE. https://www.educause.edu/ecar/research-publications/driving-digital-transformation-in-higher-education/2020/defining-digital-transformation

Efendi, S. (2021). Implementation of Talent Management as an Effort to Improve Employee Performance. Proceedings of the 2nd Annual Conference on Blended Learning, Educational Technology and Innovation (ACBLETI 2020), 560, 537–542. https://doi.org/10.2991/ASSEHR.K.210615.100

Eisbach, S., Langer, M., & Hertel, G. (2023). Optimizing human-AI collaboration: Effects of motivation and accuracy information in AI-supported decision-making. Computers in Human Behavior: Artificial Humans, 1(2), 100015. https://doi.org/10.1016/J.CHBAH.2023.100015

Faqihi, A., & Miah, S. J. (2023). Artificial Intelligence-Driven Talent Management System: Exploring the Risks and Options for Constructing a Theoretical Foundation. Journal of Risk and Financial Management 2023, Vol. 16, Page 31, 16(1), 31. https://doi.org/10.3390/JRFM16010031

Fernandez-Vidal, J., Antonio Perotti, F., Gonzalez, R., & Gasco, J. (2022). Managing digital transformation: The view from the top. Journal of Business Research, 152, 29–41. https://doi.org/10.1016/J.JBUSRES.2022.07.020

Fitzgerald, M. (2013). 592 – Overlap autism and schizophrenia. European Psychiatry, 28, 1. https://doi.org/10.1016/S0924-9338(13)75865-6

Fjeld, J., Achten, N., Hilligoss, H., Nagy, A., & Srikumar, M. (2020). Principled Artificial Intelligence: Mapping Consensus in Ethical and Rights-Based Approaches to Principles for AI. SSRN Electronic Journal. https://doi.org/10.2139/SSRN.3518482

Gaonkar, S., Khan, D., & Singh, A. (2022). Impact of Gamification on Learning and Development. Abbreviated Key Title: J Adv Educ Philos, 6(2). https://doi.org/10.36348/jaep.2022.v06i02.003

Grzybowski, A., Pawlikowska – Łagód, K., & Lambert, W. C. (2024). A History of Artificial Intelligence. Clinics in Dermatology. https://doi.org/10.1016/J.CLINDERMATOL.2023.12.016

Hasanudin, H., & Pratama, A. Y. (2023). The Effect of Talent Management, Internal Communication and Work Life Balance on Employee Performance Through Employee Satisfaction at PT. Aru Raharja. JMKSP (Jurnal Manajemen, Kepemimpinan, Dan Supervisi Pendidikan), 8(1), 587–606. https://doi.org/10.31851/JMKSP.V8I1.12940

Huang, X., Yang, F., Zheng, J., Feng, C., & Zhang, L. (2023). Personalized human resource management via HR analytics and artificial intelligence: Theory and implications. Asia Pacific Management Review, 28(4), 598–610. https://doi.org/10.1016/J.APMRV.2023.04.004

Jacob Fernandes França, T., São Mamede, H., Pereira Barroso, J. M., & Pereira Duarte dos Santos, V. M. (2023). Artificial intelligence applied to potential assessment and talent identification in an organisational context. Heliyon, 9(4), e14694. https://doi.org/10.1016/J.HELIYON.2023.E14694

Jennifer Elias, C. (2023). Google restricting internet access to some employees for security. https://www.cnbc.com/2023/07/18/google-restricting-internet-access-to-some-employees-for-security.html

Kambur, E., & Akar, C. (2022). Human resource developments with the touch of artificial intelligence: a scale development study. International Journal of Manpower, 43(1), 168–205. https://doi.org/10.1108/IJM-04-2021-0216/FULL/XML

Kane, G. C., Palmer, D., & Phillips, A. N. (2017). Achieving Digital Maturity. ${sadil.baseUrl}/handle/123456789/1453

Larkin, A., & Hystad, P. (2017). Towards Personal Exposures: How Technology Is Changing Air Pollution and Health Research. Current Environmental Health Reports, 4(4), 463–471. https://doi.org/10.1007/S40572-017-0163-Y/METRICS

Lund, S., Manyika, J., & Robinson, K. (2016). Managing talent in a digital age.

Malik, A., De Silva, M. T. T., Budhwar, P., & Srikanth, N. R. (2021). Elevating talents’ experience through innovative artificial intelligence-mediated knowledge sharing: Evidence from an IT-multinational enterprise. Journal of International Management, 27(4), 100871. https://doi.org/10.1016/J.INTMAN.2021.100871

Matt, C., Hess, T., & Benlian, A. (2015). Digital Transformation Strategies. Business and Information Systems Engineering, 57(5), 339–343. https://doi.org/10.1007/S12599-015-0401-5/METRICS

Mauro, A. De, Greco, M., Grimaldi, M., of, G. N.-P., & 2016, undefined. (n.d.). Beyond data scientists: a review of big data skills and job families. Researchgate.NetA De Mauro, M Greco, M Grimaldi, G NobiliProceedings of IFKAD, 2016•researchgate.Net. Retrieved February 3, 2024, from https://www.researchgate.net/profile/Andrea-De-Mauro-2/publication/305109030_Beyond_Data_Scientists_a_Review_of_Big_Data_Skills_and_Job_Families/links/578210fc08ae01f736e8c600/Beyond-Data-Scientists-a-Review-of-Big-Data-Skills-and-Job-Families.pdf

Mikalef, P., & Gupta, M. (2021). Artificial intelligence capability: Conceptualization, measurement calibration, and empirical study on its impact on organizational creativity and firm performance. Information & Management, 58(3), 103434. https://doi.org/10.1016/J.IM.2021.103434

Mikalef, P., Krogstie, J., Pappas, I. O., & Pavlou, P. (2020). Exploring the relationship between big data analytics capability and competitive performance: The mediating roles of dynamic and operational capabilities. Information & Management, 57(2), 103169. https://doi.org/10.1016/J.IM.2019.05.004

Montero Guerra, J. M., Danvila-del-Valle, I., & Méndez Suárez, M. (2023). The impact of digital transformation on talent management. Technological Forecasting and Social Change, 188, 122291. https://doi.org/10.1016/J.TECHFORE.2022.122291

Nawaz, N., Arunachalam, H., Pathi, B. K., & Gajenderan, V. (2024). The adoption of artificial intelligence in human resources management practices. International Journal of Information Management Data Insights, 4(1), 100208. https://doi.org/10.1016/J.JJIMEI.2023.100208

Paul, T. (2014). An evaluation of the effectiveness of e-learning, mobile learning, and instructor-led training in organizational training and development. https://search.proquest.com/openview/166b224e4f83b531983704b32b446668/1?pq-origsite=gscholar&cbl=18750

Radonjić, A., Duarte, H., & Pereira, N. (2022). Artificial intelligence and HRM: HR managers’ perspective on decisiveness and challenges. European Management Journal. https://doi.org/10.1016/J.EMJ.2022.07.001

Raguseo, E. (2018). Big data technologies: An empirical investigation on their adoption, benefits and risks for companies. International Journal of Information Management, 38(1), 187–195. https://doi.org/10.1016/J.IJINFOMGT.2017.07.008

Rebelo, A. D., Verboom, D. E., dos Santos, N. R., & de Graaf, J. W. (2023). The impact of artificial intelligence on the tasks of mental healthcare workers: A scoping review. Computers in Human Behavior: Artificial Humans, 1(2), 100008. https://doi.org/10.1016/J.CHBAH.2023.100008

Rousseau, D. M., Manning, J., & Denyer, D. (2008). 11 Evidence in Management and Organizational Science: Assembling the Field’s Full Weight of Scientific Knowledge Through Syntheses. The Academy of Management Annals, 2(1), 475–515. https://doi.org/10.1080/19416520802211651

Rožman, M., Oreški, D., & Tominc, P. (2022). Integrating artificial intelligence into a talent management model to increase the work engagement and performance of enterprises. Frontiers in Psychology, 13, 1014434. https://doi.org/10.3389/FPSYG.2022.1014434/BIBTEX

Russell, C., & Bennett, N. (2015). Big data and talent management: Using hard data to make the soft stuff easy. Business Horizons, 58(3), 237–242. https://doi.org/10.1016/J.BUSHOR.2014.08.001

Scullion, H., Collings, D. G., & Caligiuri, P. (2010). Global talent management. Journal of World Business, 45(2), 105–108. https://doi.org/10.1016/J.JWB.2009.09.011

Shahzad, M. F., Xu, S., Naveed, W., Nusrat, S., & Zahid, I. (2023). Investigating the impact of artificial intelligence on human resource functions in the health sector of China: A mediated moderation model. Heliyon, 9(11), e21818. https://doi.org/10.1016/J.HELIYON.2023.E21818

Simpson, P., School, P. J.-B. B. B., & 2015, undefined. (n.d.). Gamification and Human Resources: an overview. Brighton.Ac.UkP Simpson, P JenkinsBrighton: Brighton Business School, 2015•brighton.Ac.Uk. Retrieved February 3, 2024, from https://www.brighton.ac.uk/_pdf/research/crome/gamification-and-hr-overview-january-2015.pdf

Söderlund, M. (2023). Who is who in the age of service robots: The impact of robots’ demand for user identification in human-to-robot interactions. Computers in Human Behavior: Artificial Humans, 1(2), 100013. https://doi.org/10.1016/J.CHBAH.2023.100013

Sugiono, E. (2021). The Influence of Transformational Leadership, Talent Management, and Employee Placement on Employee Engagement and Its Implications for Employee Performance: Case Study of Premier Bintaro Hospital, South Tangerang City, Indonesia. https://doi.org/10.4025/DIALOGOS.V25I1.76

Sugiono, E., Efendi, S., & Hendryadi. (2023). Linking talent management to thriving at work and employees’ voice behavior: The moderating role of person–organization fit. Cogent Social Sciences, 9(2). https://doi.org/10.1080/23311886.2023.2244309

Tongkachok, K., Garg, S., Vemuri, V. P., Chaudhary, V., Vitthal Koli, P., & Suresh Kumar, K. (2022). The Role of Artificial Intelligence on Organisational support Programmes to Enhance work outcome and Employees Behaviour. Materials Today: Proceedings, 56, 2383–2387. https://doi.org/10.1016/J.MATPR.2021.12.205

van Esch, P., Black, J. S., & Ferolie, J. (2019). Marketing AI recruitment: The next phase in job application and selection. Computers in Human Behavior, 90, 215–222. https://doi.org/10.1016/J.CHB.2018.09.009

Varma, A., Dawkins, C., & Chaudhuri, K. (2023). Artificial intelligence and people management: A critical assessment through the ethical lens. Human Resource Management Review, 33(1), 100923. https://doi.org/10.1016/J.HRMR.2022.100923

Votto, A. M., Valecha, R., Najafirad, P., & Rao, H. R. (2021). Artificial Intelligence in Tactical Human Resource Management: A Systematic Literature Review. International Journal of Information Management Data Insights, 1(2), 100047. https://doi.org/10.1016/J.JJIMEI.2021.100047

Wang, W., Zhang, H., Sun, Z., Wang, L., Zhao, J., & Wu, F. (2023). Can digital policy improve corporate sustainability? Empirical evidence from China’s national comprehensive big data pilot zones. Telecommunications Policy, 47(9), 102617. https://doi.org/10.1016/J.TELPOL.2023.102617

Downloads

Published

2024-07-12

How to Cite

Aditya Santoso, Suryono Efendi, & Andini Nurwulandari. (2024). The Future of Big Data and Artificial Intelligence in Talent Management Practices: A Literature Review. International Journal of Economics and Management Sciences, 1(3), 161–174. https://doi.org/10.61132/ijems.v1i3.132