The Future of Big Data and Artificial Intelligence in Talent Management Practices: A Literature Review
DOI:
https://doi.org/10.61132/ijems.v1i3.132Keywords:
Artificial Intelligence, Big Data, Talent ManagementAbstract
Currently, the business sector has entered a digital transformation stage involving Big Data (BD) and Artificial Intelligence (AI). At this stage the institution must change the way it operates its business, even to a philosophical point. This paper attempts to predict the direction of these changes through literature studies. The purpose of this paper is to provide a broad view regarding the application of BD and AI in Talent Management (MT) practice. From this study it was found that the use of AI and BD in the MT process (recruiting, developing, retaining and deploying talent) has obstacles inculde: 1) availability of expert human resources, 2) data security and 3) psychological barriers of top management and employees. Some of the strategic recommendations found include: 1) Building HR expertise and adaptation, 2) Legal readiness, 3) Managerial strategy and 4) Reducing AI bias to increase the fairness of AI decisions.
Downloads
References
Al-Jarrah, O. Y., Yoo, P. D., Muhaidat, S., Karagiannidis, G. K., & Taha, K. (2015). Efficient Machine Learning for Big Data: A Review. Big Data Research, 2(3), 87–93. https://doi.org/10.1016/J.BDR.2015.04.001
Allal-Chérif, O., Yela Aránega, A., & Castaño Sánchez, R. (2021). Intelligent recruitment: How to identify, select, and retain talents from around the world using artificial intelligence. Technological Forecasting and Social Change, 169, 120822. https://doi.org/10.1016/J.TECHFORE.2021.120822
Aminullah, E., Fizzanty, T., Nawawi, N., Suryanto, J., Pranata, N., Maulana, I., Ariyani, L., Wicaksono, A., Suardi, I., Azis, N. L. L., & Budiatri, A. P. (2022). Interactive Components of Digital MSMEs Ecosystem for Inclusive Digital Economy in Indonesia. Journal of the Knowledge Economy, 1–31. https://doi.org/10.1007/S13132-022-01086-8/FIGURES/2
Booth, A., Sutton, A., & Papaioannou, D. (n.d.). Systematic approaches to a successful literature review. 326. Retrieved November 23, 2023, from https://books.google.com/books/about/Systematic_Approaches_to_a_Successful_Li.html?hl=id&id=JD1DCgAAQBAJ
Chen, P. T., Lin, C. L., & Wu, W. N. (2020). Big data management in healthcare: Adoption challenges and implications. International Journal of Information Management, 53, 102078. https://doi.org/10.1016/J.IJINFOMGT.2020.102078
Chou, S. F., Horng, J. S., Liu, C. H., Yu, T. Y., & Kuo, Y. T. (2022). Identifying the critical factors for sustainable marketing in the catering: The influence of big data applications, marketing innovation, and technology acceptance model factors. Journal of Hospitality and Tourism Management, 51, 11–21. https://doi.org/10.1016/J.JHTM.2022.02.010
Chowdhury, S., Dey, P., Joel-Edgar, S., Bhattacharya, S., Rodriguez-Espindola, O., Abadie, A., & Truong, L. (2023). Unlocking the value of artificial intelligence in human resource management through AI capability framework. Human Resource Management Review, 33(1), 100899. https://doi.org/10.1016/J.HRMR.2022.100899
Coulson-Thomas, C. (2012). Talent management and building high performance organisations. Industrial and Commercial Training, 44(7), 429–436. https://doi.org/10.1108/00197851211268027/FULL/XML
da Silva, L. B. P., Soltovski, R., Pontes, J., Treinta, F. T., Leitão, P., Mosconi, E., de Resende, L. M. M., & Yoshino, R. T. (2022). Human resources management 4.0: Literature review and trends. Computers & Industrial Engineering, 168, 108111. https://doi.org/10.1016/J.CIE.2022.108111
De Mauro, A., Greco, M., Grimaldi, M., & Ritala, P. (2018). Human resources for Big Data professions: A systematic classification of job roles and required skill sets. Information Processing & Management, 54(5), 807–817. https://doi.org/10.1016/J.IPM.2017.05.004
Delecraz, S., Eltarr, L., Becuwe, M., Bouxin, H., Boutin, N., & Oullier, O. (2022). Responsible Artificial Intelligence in Human Resources Technology: An innovative inclusive and fair by design matching algorithm for job recruitment purposes. Journal of Responsible Technology, 11, 100041. https://doi.org/10.1016/J.JRT.2022.100041
Earley, S. (2014). The digital transformation: Staying competitive. IT Professional, 16(2), 58–60. https://doi.org/10.1109/MITP.2014.24
EDUCAUSE. (2020). Defining Digital Transformation | EDUCAUSE. https://www.educause.edu/ecar/research-publications/driving-digital-transformation-in-higher-education/2020/defining-digital-transformation
Efendi, S. (2021). Implementation of Talent Management as an Effort to Improve Employee Performance. Proceedings of the 2nd Annual Conference on Blended Learning, Educational Technology and Innovation (ACBLETI 2020), 560, 537–542. https://doi.org/10.2991/ASSEHR.K.210615.100
Eisbach, S., Langer, M., & Hertel, G. (2023). Optimizing human-AI collaboration: Effects of motivation and accuracy information in AI-supported decision-making. Computers in Human Behavior: Artificial Humans, 1(2), 100015. https://doi.org/10.1016/J.CHBAH.2023.100015
Faqihi, A., & Miah, S. J. (2023). Artificial Intelligence-Driven Talent Management System: Exploring the Risks and Options for Constructing a Theoretical Foundation. Journal of Risk and Financial Management 2023, Vol. 16, Page 31, 16(1), 31. https://doi.org/10.3390/JRFM16010031
Fernandez-Vidal, J., Antonio Perotti, F., Gonzalez, R., & Gasco, J. (2022). Managing digital transformation: The view from the top. Journal of Business Research, 152, 29–41. https://doi.org/10.1016/J.JBUSRES.2022.07.020
Fitzgerald, M. (2013). 592 – Overlap autism and schizophrenia. European Psychiatry, 28, 1. https://doi.org/10.1016/S0924-9338(13)75865-6
Fjeld, J., Achten, N., Hilligoss, H., Nagy, A., & Srikumar, M. (2020). Principled Artificial Intelligence: Mapping Consensus in Ethical and Rights-Based Approaches to Principles for AI. SSRN Electronic Journal. https://doi.org/10.2139/SSRN.3518482
Gaonkar, S., Khan, D., & Singh, A. (2022). Impact of Gamification on Learning and Development. Abbreviated Key Title: J Adv Educ Philos, 6(2). https://doi.org/10.36348/jaep.2022.v06i02.003
Grzybowski, A., Pawlikowska – Łagód, K., & Lambert, W. C. (2024). A History of Artificial Intelligence. Clinics in Dermatology. https://doi.org/10.1016/J.CLINDERMATOL.2023.12.016
Hasanudin, H., & Pratama, A. Y. (2023). The Effect of Talent Management, Internal Communication and Work Life Balance on Employee Performance Through Employee Satisfaction at PT. Aru Raharja. JMKSP (Jurnal Manajemen, Kepemimpinan, Dan Supervisi Pendidikan), 8(1), 587–606. https://doi.org/10.31851/JMKSP.V8I1.12940
Huang, X., Yang, F., Zheng, J., Feng, C., & Zhang, L. (2023). Personalized human resource management via HR analytics and artificial intelligence: Theory and implications. Asia Pacific Management Review, 28(4), 598–610. https://doi.org/10.1016/J.APMRV.2023.04.004
Jacob Fernandes França, T., São Mamede, H., Pereira Barroso, J. M., & Pereira Duarte dos Santos, V. M. (2023). Artificial intelligence applied to potential assessment and talent identification in an organisational context. Heliyon, 9(4), e14694. https://doi.org/10.1016/J.HELIYON.2023.E14694
Jennifer Elias, C. (2023). Google restricting internet access to some employees for security. https://www.cnbc.com/2023/07/18/google-restricting-internet-access-to-some-employees-for-security.html
Kambur, E., & Akar, C. (2022). Human resource developments with the touch of artificial intelligence: a scale development study. International Journal of Manpower, 43(1), 168–205. https://doi.org/10.1108/IJM-04-2021-0216/FULL/XML
Kane, G. C., Palmer, D., & Phillips, A. N. (2017). Achieving Digital Maturity. ${sadil.baseUrl}/handle/123456789/1453
Larkin, A., & Hystad, P. (2017). Towards Personal Exposures: How Technology Is Changing Air Pollution and Health Research. Current Environmental Health Reports, 4(4), 463–471. https://doi.org/10.1007/S40572-017-0163-Y/METRICS
Lund, S., Manyika, J., & Robinson, K. (2016). Managing talent in a digital age.
Malik, A., De Silva, M. T. T., Budhwar, P., & Srikanth, N. R. (2021). Elevating talents’ experience through innovative artificial intelligence-mediated knowledge sharing: Evidence from an IT-multinational enterprise. Journal of International Management, 27(4), 100871. https://doi.org/10.1016/J.INTMAN.2021.100871
Matt, C., Hess, T., & Benlian, A. (2015). Digital Transformation Strategies. Business and Information Systems Engineering, 57(5), 339–343. https://doi.org/10.1007/S12599-015-0401-5/METRICS
Mauro, A. De, Greco, M., Grimaldi, M., of, G. N.-P., & 2016, undefined. (n.d.). Beyond data scientists: a review of big data skills and job families. Researchgate.NetA De Mauro, M Greco, M Grimaldi, G NobiliProceedings of IFKAD, 2016•researchgate.Net. Retrieved February 3, 2024, from https://www.researchgate.net/profile/Andrea-De-Mauro-2/publication/305109030_Beyond_Data_Scientists_a_Review_of_Big_Data_Skills_and_Job_Families/links/578210fc08ae01f736e8c600/Beyond-Data-Scientists-a-Review-of-Big-Data-Skills-and-Job-Families.pdf
Mikalef, P., & Gupta, M. (2021). Artificial intelligence capability: Conceptualization, measurement calibration, and empirical study on its impact on organizational creativity and firm performance. Information & Management, 58(3), 103434. https://doi.org/10.1016/J.IM.2021.103434
Mikalef, P., Krogstie, J., Pappas, I. O., & Pavlou, P. (2020). Exploring the relationship between big data analytics capability and competitive performance: The mediating roles of dynamic and operational capabilities. Information & Management, 57(2), 103169. https://doi.org/10.1016/J.IM.2019.05.004
Montero Guerra, J. M., Danvila-del-Valle, I., & Méndez Suárez, M. (2023). The impact of digital transformation on talent management. Technological Forecasting and Social Change, 188, 122291. https://doi.org/10.1016/J.TECHFORE.2022.122291
Nawaz, N., Arunachalam, H., Pathi, B. K., & Gajenderan, V. (2024). The adoption of artificial intelligence in human resources management practices. International Journal of Information Management Data Insights, 4(1), 100208. https://doi.org/10.1016/J.JJIMEI.2023.100208
Paul, T. (2014). An evaluation of the effectiveness of e-learning, mobile learning, and instructor-led training in organizational training and development. https://search.proquest.com/openview/166b224e4f83b531983704b32b446668/1?pq-origsite=gscholar&cbl=18750
Radonjić, A., Duarte, H., & Pereira, N. (2022). Artificial intelligence and HRM: HR managers’ perspective on decisiveness and challenges. European Management Journal. https://doi.org/10.1016/J.EMJ.2022.07.001
Raguseo, E. (2018). Big data technologies: An empirical investigation on their adoption, benefits and risks for companies. International Journal of Information Management, 38(1), 187–195. https://doi.org/10.1016/J.IJINFOMGT.2017.07.008
Rebelo, A. D., Verboom, D. E., dos Santos, N. R., & de Graaf, J. W. (2023). The impact of artificial intelligence on the tasks of mental healthcare workers: A scoping review. Computers in Human Behavior: Artificial Humans, 1(2), 100008. https://doi.org/10.1016/J.CHBAH.2023.100008
Rousseau, D. M., Manning, J., & Denyer, D. (2008). 11 Evidence in Management and Organizational Science: Assembling the Field’s Full Weight of Scientific Knowledge Through Syntheses. The Academy of Management Annals, 2(1), 475–515. https://doi.org/10.1080/19416520802211651
Rožman, M., Oreški, D., & Tominc, P. (2022). Integrating artificial intelligence into a talent management model to increase the work engagement and performance of enterprises. Frontiers in Psychology, 13, 1014434. https://doi.org/10.3389/FPSYG.2022.1014434/BIBTEX
Russell, C., & Bennett, N. (2015). Big data and talent management: Using hard data to make the soft stuff easy. Business Horizons, 58(3), 237–242. https://doi.org/10.1016/J.BUSHOR.2014.08.001
Scullion, H., Collings, D. G., & Caligiuri, P. (2010). Global talent management. Journal of World Business, 45(2), 105–108. https://doi.org/10.1016/J.JWB.2009.09.011
Shahzad, M. F., Xu, S., Naveed, W., Nusrat, S., & Zahid, I. (2023). Investigating the impact of artificial intelligence on human resource functions in the health sector of China: A mediated moderation model. Heliyon, 9(11), e21818. https://doi.org/10.1016/J.HELIYON.2023.E21818
Simpson, P., School, P. J.-B. B. B., & 2015, undefined. (n.d.). Gamification and Human Resources: an overview. Brighton.Ac.UkP Simpson, P JenkinsBrighton: Brighton Business School, 2015•brighton.Ac.Uk. Retrieved February 3, 2024, from https://www.brighton.ac.uk/_pdf/research/crome/gamification-and-hr-overview-january-2015.pdf
Söderlund, M. (2023). Who is who in the age of service robots: The impact of robots’ demand for user identification in human-to-robot interactions. Computers in Human Behavior: Artificial Humans, 1(2), 100013. https://doi.org/10.1016/J.CHBAH.2023.100013
Sugiono, E. (2021). The Influence of Transformational Leadership, Talent Management, and Employee Placement on Employee Engagement and Its Implications for Employee Performance: Case Study of Premier Bintaro Hospital, South Tangerang City, Indonesia. https://doi.org/10.4025/DIALOGOS.V25I1.76
Sugiono, E., Efendi, S., & Hendryadi. (2023). Linking talent management to thriving at work and employees’ voice behavior: The moderating role of person–organization fit. Cogent Social Sciences, 9(2). https://doi.org/10.1080/23311886.2023.2244309
Tongkachok, K., Garg, S., Vemuri, V. P., Chaudhary, V., Vitthal Koli, P., & Suresh Kumar, K. (2022). The Role of Artificial Intelligence on Organisational support Programmes to Enhance work outcome and Employees Behaviour. Materials Today: Proceedings, 56, 2383–2387. https://doi.org/10.1016/J.MATPR.2021.12.205
van Esch, P., Black, J. S., & Ferolie, J. (2019). Marketing AI recruitment: The next phase in job application and selection. Computers in Human Behavior, 90, 215–222. https://doi.org/10.1016/J.CHB.2018.09.009
Varma, A., Dawkins, C., & Chaudhuri, K. (2023). Artificial intelligence and people management: A critical assessment through the ethical lens. Human Resource Management Review, 33(1), 100923. https://doi.org/10.1016/J.HRMR.2022.100923
Votto, A. M., Valecha, R., Najafirad, P., & Rao, H. R. (2021). Artificial Intelligence in Tactical Human Resource Management: A Systematic Literature Review. International Journal of Information Management Data Insights, 1(2), 100047. https://doi.org/10.1016/J.JJIMEI.2021.100047
Wang, W., Zhang, H., Sun, Z., Wang, L., Zhao, J., & Wu, F. (2023). Can digital policy improve corporate sustainability? Empirical evidence from China’s national comprehensive big data pilot zones. Telecommunications Policy, 47(9), 102617. https://doi.org/10.1016/J.TELPOL.2023.102617
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 International Journal of Economics and Management Sciences
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.