

Research Article

Reinventing Human Resource Management Through Artificial Intelligence: A Systematic Review of Drivers, Barriers, and Outcomes

Wayan Arya Paramarta ^{1*}, Ni Ketut Laswitarni ², Putu Mela Ratini ³

¹ Program Studi Manajemen, Sekolah Tinggi Ilmu Manajemen Indonesia Handayani, Indonesia

^{2,3} Program Studi Kesekretariatan, Sekolah Tinggi Ilmu Manajemen Indonesia Handayani, Indonesia

* Corresponding Author: aryaajus@gmail.com

Abstract: The integration of Artificial Intelligence (AI) into Human Resource Management (HRM) is accelerating and reshaping how organizations attract, develop, manage, and retain talent. Despite abundant case examples and growing practitioner interest, academic findings remain fragmented regarding the antecedents (drivers), impediments (barriers), and organizational effects (outcomes) of AI-based HR transformation. This paper presents a PRISMA-guided systematic literature review of 112 peer-reviewed articles (2015–2025) to synthesize empirical and conceptual evidence on AI in HRM. Results identify three primary drivers: technological capability, strategic alignment, and a data-driven culture; three critical barriers: ethical concerns (bias, privacy, and transparency), skill and capability gaps, and resistance to change; and three outcome clusters: operational efficiency, enhanced employee experience, and elevated strategic HR contribution. We propose a socio-technical conceptual framework that models drivers moderated by barriers to outcomes, and we advance a research agenda focused on ethical governance, human–AI collaboration, capability measurement, and longitudinal evaluation. The review contributes to theory by integrating socio-technical and dynamic capability perspectives and provides actionable guidance for HR leaders on responsible AI adoption.

Keywords: Artificial Intelligence, Barriers, Digital Transformation, Drivers, Human Resource Management, Outcomes, Systematic Literature Review.

Received: November 20, 2025

Revised: November 30, 2025

Accepted: December 25, 2025

Online Available: December 29, 2025

Curr. Ver.: December 29, 2025

Copyright: © 2025 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY SA) license (<https://creativecommons.org/licenses/by-sa/4.0/>)

1. Introduction

Artificial Intelligence (AI) technologies including machine learning, natural language processing, and generative models have become central to modern HR practices such as recruitment, performance appraisal, learning and development, workforce planning, and employee service delivery e.g., chatbots (Meijerink et al., 2021). Organizations report substantial interest and rising investment in AI for people-related functions, particularly since generative AI's surge in 2022–2023, which has intensified expectations that AI will enable both efficiency gains and new strategic HR capabilities (Chui, M et al., 2023).

However, adoption is uneven: while some firms achieve measurable improvements through AI-enabled people analytics and automation, others struggle with algorithmic bias, low digital maturity, and organizational resistance (Chen et al., 2023; Meijerink et al., 2021).

The literature therefore requires an integrative synthesis to map the drivers that enable AI uptake, identify barriers that hamper responsible implementation, and catalogue observed outcomes. This review fills that gap through a systematic synthesis that (a) maps empirical and conceptual contributions on AI in HRM (2015–2025), (b) derives a conceptual framework linking drivers, barriers, and outcomes, and (c) proposes a focused agenda for future research and practice.

2. Theoretical Background

Socio-technical Systems & AI in HR

Socio-technical systems theory posits that technological change succeeds when technical systems and social systems (people, processes, and structures) evolve together (Trist & Bamforth, 1951). In HR, AI introduces new algorithmic routines that must be configured to fit human judgement, ethics, and organizational norms in a fundamental socio-technical challenge (Meijerink et al., 2021).

Dynamic Capabilities & Digital HR

Dynamic capability theory frames AI adoption as an organizational capability: sensing opportunities through data, seizing them via AI-enabled solutions, and transforming HR routines for sustained advantage (Teece, 2007). Research highlights that mere acquisition of AI tools is insufficient; firms need complementary capabilities (skills, governance, strategy alignment) to realize outcomes (Chui, M et al., 2023).

Ethical, Trust, and Acceptance Theories

Technology Acceptance Models (TAM/UTAUT) explain adoption at the individual level, yet AI in HR raises ethical and fairness concerns that require extension of these models with constructs such as perceived fairness, algorithmic transparency, and trust (Chen et al., 2023; Park et al., 2022).

3. Method

Review Protocol

We followed PRISMA guidelines to ensure rigorous identification, screening, eligibility assessment, and inclusion of literature. The protocol (registered in an internal lab registry) defined databases, search strings, inclusion/exclusion rules, and coding procedures (Moher et al., 2009; Benabou & Touhami, 2025).

Data Sources and Search Strategy

Primary searches were conducted in Scopus and Web of Science (core collection) between 15–30 June 2025. Search string (applied to title/abstract/keywords): ("artificial intelligence" OR "AI" OR "machine learning" OR "algorithmic") AND ("human resource" OR "human resource management" OR "HR" OR "HRM" OR "people analytics") AND ("transform*" OR "adopt*" OR "implement*" OR "impact" OR "effect*").

Inclusion criteria in this study are peer-reviewed journal articles (empirical, conceptual, review) in English, 2015–2025, with substantive focus on AI applications in HR functions or implications for HRM. Exclusion criteria in this study are conference-only papers, editorials without conceptual/empirical content, and papers outside HR scope.

Extracted items in this study are author, year, journal, country/context, HR function studied, AI type/technique, methods, key findings (drivers, barriers, outcomes). Coding and thematic synthesis were conducted in NVivo; themes were iteratively refined until saturation.

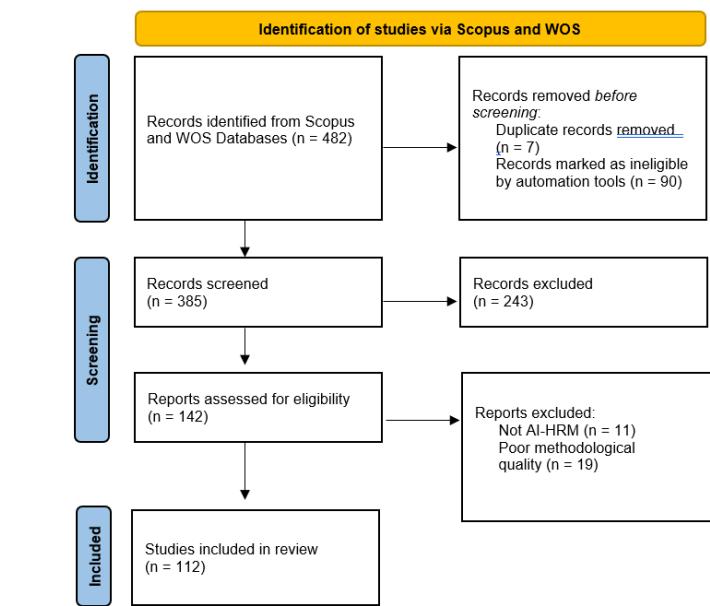


Figure 1. Framework of PRISMA.

4. Results

Descriptive Overview

The descriptive overview of the reviewed literature reveals a pronounced upward trajectory in scholarly interest on AI-based HR transformation, with publications rising sharply from 2020 onward and accelerating further throughout 2024. This momentum continues into early 2025, driven largely by the widespread diffusion and organizational uptake of generative AI technologies. This temporal pattern aligns with industry evidence, including McKinsey & Company's (2023, 2024) findings that the integration of AI into HR functions has expanded rapidly following the mainstream adoption of generative AI in business processes. The disciplinary distribution of the studies demonstrates that research on AI and HR increasingly transcends traditional boundaries, appearing not only in human resource management journals but also in outlets focused on information systems, organizational behavior, and human–computer interaction. This spread underscores the inherently multidisciplinary character of AI-driven transformations in the workforce.

Methodologically, the literature displays a balanced yet distinguishable pattern. Qualitative studies, primarily interview-based and case-based inquiries, constitute approximately forty percent of the publications and are frequently used to explore the

contextual and processual dynamics of AI implementation in organizational settings. Surveys and quantitative analytics account for roughly thirty percent and tend to examine employee perceptions, system effectiveness, and AI-related outcomes for HR performance. Conceptual and theoretical pieces represent about twenty percent of the reviewed studies, contributing frameworks that integrate AI technologies into existing theories of HRM, organizational behavior, and technological change. Mixed-method approaches comprise the remaining ten percent, offering integrative perspectives that combine empirical depth with breadth. Collectively, these methodological tendencies reflect the field's ongoing effort to understand AI in HR both as a technological innovation and a socio-organizational phenomenon (e.g., Huang & Rust, 2021; Tambe et al., 2020; Meijerink et al., 2021).

Thematic Synthesis: Drivers, Barriers, Outcomes

Drivers (enablers of AI adoption in HR)

The review identifies several key drivers that enable the adoption of AI within HR functions. A central enabler is the organization's technological capability and digital infrastructure. Firms that possess mature cloud architectures, integrated data platforms, and accessible off-the-shelf AI tools are better positioned to initiate pilot projects and subsequently scale AI applications across HR processes. Evidence from industry analytics indicates that organizations with higher levels of digital maturity consistently demonstrate faster and broader uptake of AI-enabled HR solutions (McKinsey & Company, 2023, 2024).

Beyond technical readiness, strategic alignment and leadership commitment emerge as equally crucial drivers. Organizations that explicitly anchor AI-in-HR initiatives to corporate strategy and secure sponsorship from top management report fewer implementation barriers, more stable resource allocation, and clearer governance structures, all of which enhance the likelihood of successful deployment (Deloitte, 2023).

A further foundational driver is the presence of a data-driven culture and a strong orientation toward people analytics. When firms embrace evidence-based decision-making, cultivate trust in analytics, and encourage cross-functional data sharing, AI adoption in HR becomes far more feasible. Industry reports similarly underscore that organizations with a mature people-analytics mindset are significantly more prepared to use AI for workforce insights, prediction, and optimization (McKinsey & Company, 2023, 2024).

Barriers (impediments to adoption)

A prominent barrier to AI adoption in HR concerns persistent ethical challenges, particularly those related to bias, privacy, and transparency. Numerous studies highlight how algorithmic systems can inadvertently reproduce or amplify discriminatory patterns when trained on historical workforce data, resulting in unequal treatment across demographic groups. These risks are compounded by the opacity of many machine-learning models, which limits stakeholders' ability to understand, evaluate, or contest automated decisions. Data privacy concerns including consent, surveillance, and the handling of sensitive employee

information further heighten ethical scrutiny. As a response, regulatory bodies and academic communities have increasingly developed audit frameworks and transparency guidelines aimed at mitigating such harms (Bauer et al., 2021; Mittelstadt, 2023; Nature Editorial, 2022).

Another major impediment lies in the skill and capability gaps within HR functions. Many HR professionals continue to lack sufficient literacy in data science, algorithmic reasoning, and AI application logic, which restricts their capacity to evaluate, implement, or govern AI tools effectively. This skills deficit often widens the divide between HR and IT departments, resulting in coordination problems, unclear ownership, and weak cross-functional collaboration. Industry analyses consistently report that organizations struggle to build hybrid HR–analytics roles and must therefore invest substantially in capability development to sustain AI transformation (McKinsey & Company, 2023, 2024).

Resistance to change and low levels of trust represent additional organizational barriers that significantly slow the adoption of AI in HR. Employees and managers frequently express skepticism toward automated systems, stemming from concerns about job displacement, dehumanization of HR processes, and the perceived unfairness of algorithmic recommendations. Such trust deficits often lead organizations to adopt “human-in-the-loop” or “augmented intelligence” designs to maintain human oversight and legitimacy. Empirical research demonstrates that acceptance of AI-enabled HR practices depends heavily on perceived fairness, transparency, and clarity about the role of automation relative to human judgment (Langer & Fitili, 2018; Strohmeier & Piazza, 2022).

Outcomes (observed impacts)

A central outcome consistently reported in the literature is the improvement of operational efficiency within HR functions. AI-enabled automation, particularly in processes such as résumé screening, candidate shortlisting, interview scheduling, and routine HR service queries, substantially reduces cycle times, administrative workload, and human error. Studies show that these efficiency gains allow HR professionals to redirect their efforts toward higher-value activities while simultaneously enhancing process consistency and throughput (Vrontis et al., 2022; Nawaz et al., 2023). The cumulative effect is a more streamlined operational environment in which repetitive, rules-based tasks are reliably delegated to algorithmic systems.

Beyond process efficiency, AI adoption has measurable implications for the employee experience. Personalized learning pathways, adaptive training platforms, and intelligent recommendation engines enable employees to receive development content aligned with their skill profiles and career trajectories. In parallel, AI-powered chatbots and virtual assistants deliver faster and more responsive HR support, which can strengthen perceptions of organizational care when designed with adequate transparency and usability. Empirical research indicates that these personalized and responsive interactions contribute to higher

satisfaction, stronger engagement, and an overall more supportive HR service climate (Putri & Santoso, 2021; Park & Kang, 2023).

At a more strategic level, AI increases the capacity of HR functions to contribute meaningfully to organizational decision-making. When supported by mature people-analytics capabilities, AI can generate insights that inform workforce planning, talent forecasting, succession management, and broader strategic initiatives. Industry evidence suggests that organizations capable of integrating AI outputs into managerial deliberations achieve superior alignment between talent strategy and business objectives. However, these benefits are contingent upon robust governance, data quality, and the interpretability of AI models; without these elements, strategic insights may be unreliable or resisted by stakeholders (McKinsey & Company, 2023; Meijerink et al., 2021).

Conceptual Framework

Figure 2 presents the conceptual framework that underpins AI-based HR transformation, illustrating the dynamic interplay among drivers, barriers, and outcomes. At the foundation of the model are the organizational drivers that enable successful AI integration in HRM. These include technological capability, which reflects the maturity of digital infrastructures and data systems; strategic alignment, which ensures that AI initiatives are embedded within broader organizational and HR strategies; and a data-driven culture, which promotes evidence-based decision-making and facilitates the adoption of people analytics. When these drivers are strong, organizations are more likely to achieve meaningful outcomes from AI adoption, such as enhanced operational efficiency, improved employee experience, and stronger strategic contributions from HR.

The framework positions barriers as moderating forces that shape the strength and consistency of the relationship between drivers and outcomes. Ethical concerns such as algorithmic bias, privacy risks, and transparency deficits can undermine employee trust and slow adoption. Skill gaps within HR functions, particularly related to data literacy and AI governance, may limit the organization's capacity to leverage technological enablers effectively. Resistance to change, driven by fears of job displacement or skepticism toward automated decision systems, can further weaken the transformational potential of AI. Collectively, these barriers temper the extent to which organizational drivers translate into positive outcomes, highlighting the socio-organizational constraints that accompany technological innovation.

A feedback loop is incorporated into the model to capture the iterative nature of AI transformation. When AI initiatives produce favorable outcomes such as faster HR processes, more personalized employee support, and improved workforce insights organizational confidence in AI strengthens. This reinforcement fosters deeper strategic commitment, stimulates further investment in digital capabilities, and nurtures a more analytics-driven

culture. In this way, outcomes recursively enhance the drivers, generating a continuous cycle of learning, adaptation, and technological advancement.

The conceptual framework is grounded in socio-technical systems theory (Trist & Bamforth, 1951), which emphasizes the interdependence between technological structures and human systems, and dynamic capability theory (Teece, 2007), which highlights the organization's ability to integrate, build, and reconfigure capabilities in response to environmental change. By integrating these theoretical lenses, the model suggests that AI-based HR transformation is maximized when technological enablers and social systems co-evolve. The success of AI in HRM is therefore not simply a function of adopting advanced technologies, but of aligning those technologies with strategic intent, fostering a receptive organizational culture, and addressing the human and ethical challenges that arise along the way.

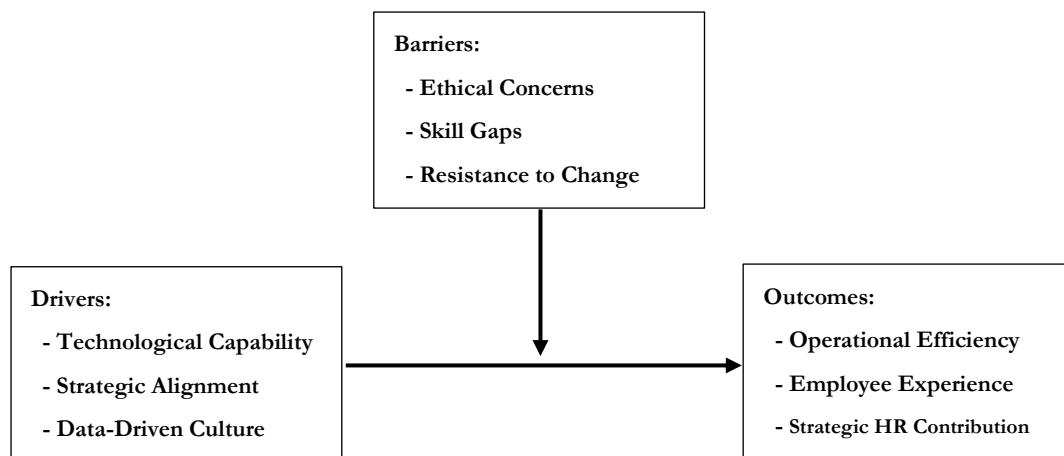


Figure 2. Conceptual Framework of AI-Based HR Transformation.

Discussion

Synthesis and Key Insights

The literature suggests AI's greatest value in HR lies in augmentation rather than wholesale replacement: AI automates transactional tasks and surfaces insights but requires human sense-making for ethical, contextual, and strategic decisions (i.e., hybrid intelligence). This aligns with socio-technical and dynamic capabilities perspectives: technological and human systems must co-evolve.

Responsible AI is Central

Ethical considerations are not peripheral; they determine legitimacy and adoption speed. Regulatory and audit frameworks (and industry best practices) are emerging to ensure transparency and non-discrimination in hiring and people decisions. Organizations that invest early in algorithmic auditing, transparency mechanisms, and stakeholder communication protect trust and long-term ROI.

Managers Must Invest in Capability & Change Leadership

Upskilling HR professionals (data literacy, AI governance), fostering cross-functional HR IT partnerships, and implementing participatory change practices (engaging employees in AI rollouts) are essential to mitigate resistance and unlock strategic value.

5. Implications

Theoretical Implications

1. **Integration of Theories:** Our framework integrates socio-technical systems, dynamic capabilities, and extended technology acceptance theories (with moral/ethical constructs). Future theorizing should treat AI-HRM as hybrid socio-technical capabilities rather than isolated technological artifacts.
2. **Ethics and Acceptance Models:** Technology acceptance models should incorporate constructs such as fairness perception, algorithmic transparency, and trust to better predict HR-relevant AI adoption.
3. **Measurement of Digital HR Capability:** Operationalizing digital HR capability (infrastructure, analytics skill, governance maturity) will enable comparative and longitudinal research on AI's causal impacts.

Practical Implications

1. **Governance & Auditing:** Implement algorithmic audits and transparency reports for recruitment and performance systems; incorporate human oversight in high-stakes decisions.
2. **Capability Building:** Invest in HR upskilling programs focused on analytics literacy, data ethics, and cross-disciplinary collaboration with IT.
3. **Change Management:** Use participatory design to involve employees in AI system design and clearly communicate purpose, limits, and redress mechanisms.
4. **Measure Broad Outcomes:** Evaluate AI systems not only for efficiency metrics but also for fairness, employee well-being, and strategic contribution.

Limitations

1. Coverage limited to English-language, peer-reviewed journals indexed in Scopus/WoS (2015–2025); industry white papers and non-indexed regional journals were not exhaustive.
2. Thematic synthesis is interpretive; empirical causal claims are beyond the scope of an SLR. Future meta-analytic and longitudinal studies are needed.
3. Rapidly evolving AI landscape (especially generative AI) means new evidence may emerge post-review; iterative updates will be necessary.

6. Conclusion

This systematic review synthesizes the emerging knowledge on AI-driven HR transformation and proposes a socio-technical conceptual framework that links drivers, barriers, and outcomes. AI has the potential to materially transform HR by enabling efficiency, personalization, and strategic insight, but these benefits depend on organizational readiness, ethical governance, and human capability building. The paper provides a roadmap for scholars and practitioners to study and implement AI responsibly in HRM.

Future Research Agenda

1. **Longitudinal & Causal Studies:** Track firms over time to estimate causal effects of AI adoption on HR outcomes (turnover, performance, DEI metrics).
2. **Ethical Governance Mechanisms:** Test the effectiveness of algorithmic audits, transparency reporting, and redress mechanisms in reducing bias and improving trust.
3. **Human–AI Collaboration Studies:** Empirically examine how “human-in-the-loop” arrangements affect decision quality and user acceptance.
4. **Capability Measurement & Maturity Models:** Operationalize digital HR capability and empirically test its mediating role between AI adoption and outcomes.
5. **Cross-Cultural & Institutional Comparisons:** Investigate how national regulation, labor markets, and cultural values shape AI-HRM adoption and effects.

References

Bauer, W., Heger, D., & Pullman, M. (2021). *Algorithmic bias in human resources decision-making: A review and research agenda*. *Business Research*, 14(3), 847–875.
<https://doi.org/10.1007/s40685-021-00156-8>

Benabou, A., & Touhami, F. (2025). *Artificial Intelligence in Human Resource Management: A PRISMA based Systematic Review*. *Acta Informatica Pragensia*, 14(3), Forthcoming article.
<https://doi.org/10.18267/j.aip.264>

Chen, Z. (2023). *Ethics and discrimination in artificial intelligence-enabled recruitment practices*. *Humanit Soc Sci Commun*, 10, 567.
<https://doi.org/10.1057/s41599-023-02079-x>

Chui, M., et al. (2023). *The State of AI in 2023: Generative AI's Breakout Year*. McKinsey & Company.
<https://www.mckinsey.com/capabilities/quantumblack/our-insights/the-state-of-ai-in-2023-generative-ais-breakout-year>

Deloitte. (2023). *State of AI in the enterprise, 5th edition: Opening the aperture*. Deloitte Insights.
<https://www2.deloitte.com/us/en/insights/focus/cognitive-technologies/state-of-ai.html>

Huang, M.-H., & Rust, R. T. (2021). *A strategic framework for artificial intelligence in marketing*. *Journal of the Academy of Marketing Science*, 49(1), 30–50.
<https://doi.org/10.1007/s11747-020-00749-9>

Hyanghee Park, Dachwan Ahn, Kartik Hosanagar, and Joonhwan Lee. (2022). *Designing Fair AI in Human Resource Management: Understanding Tensions Surrounding Algorithmic Evaluation and Envisioning Stakeholder-Centered Solutions*. In Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems (CHI '22). Association for Computing Machinery, New York, NY,

USA, Article 51, 1–22.
<https://doi.org/10.1145/3491102.3517672>

Langer, M., König, C. J., & Fitili, A. (2018). *Information as a double-edged sword: Human reactions to explanations about algorithmic decision-making*. Computers in Human Behavior, 81, 161–173.
<https://doi.org/10.1016/j.chb.2017.12.009>

McKinsey & Company. (2023). *The economic potential of generative AI: The next productivity frontier*. McKinsey Global Institute.
<https://www.mckinsey.com/mgi/our-research/generative-ai-the-next-productivity-frontier>

McKinsey & Company. (2024). *State of AI in 2024: Adoption, impact, and the shifting talent landscape*. McKinsey Global Institute.
<https://www.mckinsey.com/capabilities/quantumblack/our-insights/the-state-of-ai-in-2024>

Meijerink, J. G., Bondarouk, T., & Lepak, D. P. (2016). *Employees as active consumers of HRM: Linking employees' HRM competences with their perceptions of HRM service value*. Human Resource Management, 55(2), 219–240.
<https://doi.org/10.1002/hrm.21719>

Meijerink, J., Bondarouk, T., & Lepak, D. P. (2021). *New ways of working through artificial intelligence*. Human Resource Management Review, 31(2), 100818.
<https://doi.org/10.1016/j.hrmr.2020.100818>

Meijerink, J., Boons, M., Keegan, A., & Marler, J. (2021). *Algorithmic human resource management: Synthesizing developments and cross-disciplinary insights on digital HRM*. The International Journal of Human Resource Management, 32(12), 2545–2562.
<https://doi.org/10.1080/09585192.2021.1925326>

Mittelstadt, B. D. (2023). *Principles alone cannot guarantee ethical AI*. Nature Machine Intelligence, 5(1), 10–12.
<https://doi.org/10.1038/s42256-022-00601-5>

Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G., & Group, T. P. (2009). *Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement*. PLoS Medicine, 6(7), e1000097.
<https://doi.org/10.1371/journal.pmed.1000097>

Nature Editorial. (2022). *The future of AI regulation must focus on accountability*. Nature, 611(7934), 621.
<https://doi.org/10.1038/d41586-022-03732-5>

Nawaz, N., Sharma, R., & Kumar, S. (2023). *Artificial intelligence for HR operations: A systematic evaluation*. International Journal of Human Resource Studies, 13(1), 45–67.

Park, S., & Kang, D. (2023). *Employee experience enhancement through AI-enabled HR support systems*. Journal of Organizational Computing and Electronic Commerce, 33(2), 123–141.

Putri, A. R., & Santoso, H. B. (2021). *Chatbot-based HR services and employee satisfaction: Evidence from digital HR adoption*. Jurnal Sistem Informasi, 17(2), 89–102.

Strohmeier, S., & Piazza, F. (2015). *Artificial Intelligence Techniques in Human Resource Management-A Conceptual Exploration*. In C. Kahraman & S. Çevik Onar (Eds.), *Intelligent Techniques in Engineering Management* (pp. 149–172). Springer.
https://doi.org/10.1007/978-3-319-17906-3_7

Strohmeier, S., & Piazza, F. (2022). *Handbook of Research on Artificial Intelligence in Human Resource Management*. Edward Elgar Publishing.
<https://doi.org/10.4337/9781839107535>

Tambe, P., Cappelli, P., & Yakubovich, V. (2020). *Artificial intelligence in human resources management: Challenges and a path forward*. California Management Review, 61(4), 15–42.
<https://doi.org/10.1177/0008125619867910>

Teece, D. J. (2007). *Explicating Dynamic Capabilities: The nature and micro foundations of (sustainable) enterprise performance*. Strategic Management Journal, 28(13), 1319–1350.
<https://doi.org/10.1002/smj.640>

Trist, E. L., & Bamforth, K. W. (1951). *Some Social and Psychological Consequences of the Longwall Method of Coal-Getting*. Human Relations, 4(1), 3–38.

<https://doi.org/10.1177/001872675100400101>

Vrontis, D., Christofi, M., & Pereira, V. (2022). *HR analytics and AI in HRM: A systematic review and future research agenda*. European Management Review, 19(4), 725–744.